ON A NUMERICAL METHOD FOR DETERMINING THE ROOTS OF CHARACTERISTIC EQUATIONS

(OB ODNOM CHISLENNOM SPOSOBE OPREDELENIIA KORNEI KHARAKTERISTICHESKIKH URAVNENII)

PMM Vol.24. No.5, 1960, pp. 967-968

S. A. PANKRATOV
(Moscow)

```
(Received 6 June 1960)
```

Determination of real roots. Suppose we are given the equation

$$
\begin{equation*}
x^{n}+A_{n-1} x^{n-1}+\ldots+A_{1} x+A_{0}=0 \tag{1}
\end{equation*}
$$

If Equation (1) has a real root λ then this equation can be written in the form

$$
\begin{equation*}
(x-\lambda)\left(x^{n-1}+a_{n-2} x^{n-2}+a_{n-3} x^{n-3}+\ldots+a_{1} x+a_{0}\right)=0 \tag{2}
\end{equation*}
$$

Let us determine the coefficients a_{i} in such a way that Equation (2) may differ from (1) only by a term not containing x. This can easily be accomplished by solving the system of equations

$$
\begin{align*}
& a_{n-2}=\lambda+A_{n-1} \\
& a_{n-3}=\lambda a_{n-2}+A_{n-2} \tag{3}\\
& a_{n-4}=\lambda a_{n-3}+A_{n-3} \\
& \cdot \\
& a_{0}=\lambda a_{1}+A_{\mathbf{l}}
\end{align*}
$$

The product $A_{0}{ }^{i}=-a_{0} \lambda_{i}$ yields the term not containing x, and is, generally speaking, different from A_{0}.

Having two values A_{0}^{\prime} and $A_{0}{ }^{\prime \prime}$ which correspond to two arbitrarily chosen values λ_{1} and λ_{2} of the root under consideration, we determine a new value λ_{3} by interpolation:

$$
\begin{equation*}
\lambda_{3}=\lambda_{1}+\frac{A_{0}-A_{0}^{\prime}}{A_{0}^{\prime}-A_{0}^{\prime \prime}}\left(\lambda_{1}-\lambda_{2}\right) \tag{4}
\end{equation*}
$$

It is useful to select λ_{1} and λ_{2} so that $A_{0}^{\prime}-A_{0}$ and $A_{0}^{\prime \prime}-A$ have opposite signs. Having computed A_{0}^{3} for the new value λ_{3}, we determine the next approximate value λ by interpolation with the values λ_{i} and λ_{j}
for which $A_{0}^{i}-A_{0}$ and $A_{0}^{j}-A_{0}$ have different signs, and so on.
Determination of complex roots. We first consider the case when the characteristic equation possesses only one pair of complex roots.

Suppose we are given the fourth-degree equation

$$
\begin{equation*}
x^{4}+A_{3} x^{3}+A_{2} x^{2}+A_{1} x+A_{0}=0 \tag{5}
\end{equation*}
$$

Let us rewrite this equation in the form

$$
\begin{equation*}
\left(x^{2}+a_{1} x+a_{0}\right)\left(x^{2}+b_{1} x+b_{0}\right)=0 \tag{6}
\end{equation*}
$$

and let us determine the coefficients a_{i}, b_{i} under the earlier-mentioned condition. This leads to the following equations:

$$
\begin{array}{r}
a_{1}+b_{1}=\boldsymbol{A}_{3} \\
a_{0}+b_{0}+a_{1} b_{1}=A_{2} \tag{7}\\
a_{0} b_{1}+a_{1} b_{0}=A_{1}
\end{array}
$$

It is obvious that one of the coefficients, for example a_{1}, can be assigned arbitrarily.

The value of the term which does not contain x is equal to $A_{0}=a_{0} b_{0}$. From the two values A_{0}^{\prime} and $A_{0}{ }^{\prime \prime}$, which correspond to two values a_{1}^{\prime} and a_{1} " of the coefficients a_{1}, we find a new value $a_{1}{ }^{3}$ by interpolation as follows:

$$
\begin{equation*}
a_{1}{ }^{3}=a_{1}^{\prime}+\frac{A_{0}-A_{0^{\prime}}^{\prime}}{A_{0^{\prime}}-A_{0}^{\prime \prime}}\left(a_{1}^{\prime}-a_{1}^{\prime \prime}\right) \tag{8}
\end{equation*}
$$

Repeating this process, we find $a_{0}{ }^{i}$ for which $A_{0}{ }^{i}$ differs but little from A_{0}, and we thus determine an approximate value of the sought solution.

Let us consider the equation which has n pairs of complex roots:

$$
\begin{equation*}
x^{2 n}+A_{2 n-1} x^{2 n-1}+A_{2 n-x^{x^{2}}}+\ldots+A_{1} x+A_{0}=0 \tag{9}
\end{equation*}
$$

We rewrite this equation in the following form:

$$
\begin{equation*}
\left(x^{2}+a_{1} x+a_{0}\right)\left(x^{2 n-2}+b_{2 n-3} x^{2 n-3}+\ldots+b_{1} x+b_{0}\right)=0 \tag{10}
\end{equation*}
$$

Having been given the values of the coefficients a_{1} and a_{0}, we determine the coefficients $b_{2 n-3}, b_{2 n-4}, \ldots, b_{0}$ by requiring that. after the multiplication of the two factors in (10), the coefficients of the resulting equation be the same as the corresponding coefficients of Equation (9) except for the last two terms which may differ from A_{1} and A_{0}.

The necessary conditions on the coefficients are given by the equations

$$
\begin{gather*}
a_{1}+b_{2 n-3}=A_{2 n-1} \\
b_{2 n-4}+a_{1} b_{2 n-3}+a_{0}=A_{2 n-2} \\
b_{2 n-5}+a_{1} b_{2 n-4}+a_{0} b_{2 n-3}=A_{2 n-3} \\
b_{2 n-6}+a_{1} b_{2 n-5}+a_{0} b_{2 n-4}=A_{2 n-4} \tag{11}\\
\cdots \cdots \\
\cdots b_{0}+a_{1} b_{1}+a_{0} b_{2}=A_{2} \\
a_{1} b_{0}+a_{0} b_{1}=A_{1} \\
a_{0} b_{0}=A_{0}
\end{gather*}
$$

Fixing a_{0} and varying a_{1}, we use the earlier-given method to determine the value of a_{1} so that the coefficients A_{1}^{\prime} of x in Equation (11) may differ little from the coefficient A_{1}.

Repeating this procedure for different values of a_{0} we determine for what values of a_{1} and a_{0} the coefficients of Equations (9) and (10) will be nearly equal. In this manner we find approximate values for the first pair of complex roots. We thus obtain a new equation whose degree is less, by two, than the degree of the original equation.

The construction of the curves $a_{0}^{\prime}(\lambda), A_{0}^{\prime}\left(a_{1}\right)$ and $A_{0}^{\prime}\left(a_{1}, a_{0}\right)$, $A_{1}^{\prime}\left(a_{1}, a_{0}\right)$ is helpful in finding the roots.

The method presented requires oniy quite simple computations; it is routine and easily adapted for programming on computing machines.

Translated by H.P.T.

